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Wave  
behaviour

C

Introduction

Every year, a human heart beats more than 50 million 
times – an oscillation that leads to the movement of blood 
around our bodies.  Motions such as this and the beating 
of a hummingbird’s wings are periodic. The pattern of the 
motion repeats again and again, sometimes with the same 
fixed time interval between each repeat. This Theme deals 
with the physics of such a motion; known as an oscillation.

We begin in Topic C.1 with a detailed analysis of one 
important type of oscillation: simple harmonic motion 
(SHM). SHM has a fundamental importance. Complex 
oscillations can be described as the combined sum of many 
simple harmonic motions. This summation is important in 
many fields of science and engineering.

Oscillations lead to the production and transmission of 
mechanical waves. Waves come in many forms: Sound 
waves transmit through all materials and enable us to hear. 
Earthquake waves travel through the Earth. Our knowledge 
of wave theory enables us to understand and predict the 
behaviour of many man-made and natural phenomena. 

Topic C.2 begins the work on waves themselves with the 
description of a model for wave motion. Topic C.3 looks 
at the effects that occur when waves interact with different 
media and with each other.  Topic C.4 continues with a 

description of the mechanisms that lead to standing waves 
– an important part of the production of sound in musical
instruments. The Theme ends with Topic C.5 that deals with
the Doppler effect when waves are emitted and detected by
sources and observers moving relative to each other.

The concepts of particles and energy are inextricably linked 
throughout Theme C. Waves transfer energy but the medium 
that carries the wave is undisturbed when the wave has gone 
through. 

A mechanical wave is made up of the movement of particles. 
The particles are the medium for the wave. However, 
electromagnetic waves do not have a particulate nature and 
do not require a medium. The physics of this wave transfer is 
significantly different from that of mechanical wave motion. 
These differences have led to profound changes in our 
understanding of spacetime.

Two features of physics that have underpinned the theory of 
oscillations are observations and measurements. Galileo 
is said to have used his own pulse to time the slow swings of 
the huge candelabra in the cathedral of Pisa. He recognised 
that, whatever the amplitude of the swing, the period was 
constant. To what extent would we regard these as reliable 
observations today? 
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In this topic, you will learn about:

• oscillations and simple harmonic motion 

• the defining equation of simple harmonic motion

• the conditions for simple harmonic motion

• displacement, amplitude, time period, frequency, 
angular frequency and equilibrium position

• the mass–spring system and the simple pendulum 

• energy changes during an oscillation

• kinematic and energy calculations involving  
simple harmonic motion

Simple harmonic motion is an oscillation with an 
unchanging amplitude and frequency and which never 
ends. No energy is transfering from the oscillating system. 
It may seem strange to learn about such a specific type 
of motion, but there is a good reason. Joseph Fourier 
showed that any periodic motion could be regarded 
mathematically as a sum of individual simple harmonic 
motions. Study simple harmonic motion and you have 
studied more complex oscillations too. However, many 
oscillations are either purely or approximately simple 
harmonic. A buoy floating in the sea, a mass oscillating on 
a spring and a pendulum are just three common examples 
of this motion. 

The motion itself is characterized by a simple defining 
equation. The acceleration of a system is directly 
proportional to the displacement of the system and acts 
opposite to the displacement direction. The equation 
contains only three quantities, including a constant 
of proportionality, but the way in which these interact 
generates oscillations. The constant of proportionality 
tells us about the time taken to complete one oscillation. 
The statement about direction is crucial too. It says that 
the further the object is from an equilibrium position, then 
the larger is the acceleration back towards the equilibrium 

point. This already suggests an oscillation of some kind. 

The oscillation trades displacement for velocity, and 
potential energy for kinetic energy. When the system 
is far from equilibrium it is travelling slowly. Around the 
equilibrium point it is moving quickly so that its momentum 
carries it through equilibrium to the other half of the cycle. 
At this point, the force on the system (and therefore the 
acceleration) reverses direction, once more acting towards 
the equilibrium point. 

Our defining equation also leads to sets of equations 
linking the displacement, velocity and acceleration of the 
oscillating system with time. This means that we can go on 
to use knowledge from Theme A to describe the energy 
transfers in the oscillating system too. These can also be 
expressed in terms of time and distance. 

Finally, graphical representations of energy–time and 
displacement–time can be linked to real examples of 
simple harmonic motion. This allows us to confirm that our 
equation for harmonic motion and the predictions it makes 
are a good fit to the real oscillations that we observe in a 
practical context.

What makes the harmonic oscillator model applicable to a wide range of physical phenomena? 

Why must the defining equation of simple harmonic motion take the form it does? 

How can the energy and motion of an oscillation be analysed both graphically and algebraically?

C.1   Simple harmonic motion

A
H

L A
H

L

• phase angle

• kinematic and energy calculations involving  
simple harmonic motion.

Introduction
In this topic, you will meet the language of oscillation and consider the harmonic 
oscillator, usually referred to as simple harmonic motion. True simple harmonic 
motion can only be obtained in some systems under certain limited conditions, 
such as small displacements. Nevertheless, you can still use simple harmonic 
motion as a model in these systems, if you accept the conditions and the 
limitations they impose.

▴ Figure 1 Knowledge of simple harmonic 
motion led to the development of the 
pendulum clock. For about 300 years, 
pendulum clocks were the most precise 
clocks available. This is a sidereal clock used 
to help make astronomical observations.

Oscillations
Many oscillations in science and engineering are isochronous. This means that 
the oscillation repeats, taking the same repetition time irrespective of its size. This 
is important because, unless energy is transferred to them, real oscillating systems 
“run down” and eventually stop. The amplitude — the maximum displacement — of 
the system decreases when it transfers energy to the environment.

Joseph Fourier was a French mathematician and physicist who lived from 1768 
to 1830. In 1807, he read a paper to the Paris Institute “On the Propagation 
of Heat in Solid Bodies”. In it he used a mathematical method to reduce a 
complicated oscillation to a series of sine waves.

You can try this for yourself. Use a graphical calculator or a spreadsheet to help plot 

the function y = sin x + 
1
3

 sin 3x + 
1
5

 sin 5x + …. You can add further terms of  
1
n

 sin nx for odd values of the integer n. It does not require very many terms in the 

series to show that the series approaches a square-wave. You could also try the 

even terms to see what happens.
However, Fourier’s paper did not convince everyone in the audience. He 
had relied on intuition in places and there were some gaps in his logic. His 
mathematical method also contradicted some of the work of one of the 
examiners in the audience — Joseph-Louis Lagrange.
To settle the matter, a prize problem was set in 1810 and Fourier submitted his 
original paper along with some new work. There was only one other paper, 
and Fourier won the competition. But the feedback (possibly from Lagrange) 
was not entirely favourable, and the result was that Fourier’s work was not 
published until 1822.
Fourier’s method of splitting a signal into sinusoidal waves of different frequencies 
is widely used today and is the principle behind the spectral analysis of sound.

Drafting, revising and improving academic work ATL

Galileo is reputed to have first observed that the time period 
of a simple pendulum did not depend on its amplitude 
(provided that the amplitude remained small). The story is 
that when he was about 17 years old, he was bored during 
a service in Pisa Cathedral and observed the way that the 

chandelier swung as the wind blew it. He compared the 
time for the swings with his pulse. Sometimes the wind blew 
the chandelier into large oscillations and sometimes the 
oscillations were small. However, the number of oscillations 
in a certain number of pulse beats was always the same.

Technology for timing

▴ Figure 2 A swinging pocket watch is an 
example of a simple pendulum oscillating 
with approximate simple harmonic motion.
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While it is likely that other scientists may have observed 
that a pendulum’s period does not change with amplitude, 
Galileo was perhaps one of the first to use the pendulum 
in experiments. As a result, scientists could now measure 
time and hence other quantities such as speed. Without this 
timing mechanism, experiments in mechanics would have 
been impossible. The importance of experimental evidence 

in scientific knowledge was still a relatively new concept at 
this time, and the increased ability to conduct experiments 
increased the importance of this evidence.
How else has technology affected the value we place on 
different forms of knowledge?

Figure 2 shows a pocket watch oscillating about its centre (equilibrium) position 
from the maximum position on one side to the other. The watch is illuminated 
with a flash that occurs every 0.25 s and so it takes 1.0 s for the watch to complete 
each oscillation (to go from one side to the other and back again). A simple 
pendulum only performs approximate simple harmonic motion which changes at 
large amplitudes of swing. Nevertheless, a timepiece can be governed to make it 
into an isochronous oscillator.

Defining periodic motion
Before we can develop the mathematics of simple harmonic motion, we need a 
technical language.

To illustrate the terms we use, imagine an experiment with a mass hanging at 
the end of a spring (Figure 3(a)). The position of a small card attached to the 
mass is detected by a motion sensor on a data logger that produces a graph of 
displacement against time for the mass (Figure 3(b)). 

• The mass with its card is shown on the left in its equilibrium position. This is 
the position it adopts when at rest. 

• The mass–spring system oscillates when displaced vertically and released 
(it takes both a spring and a mass to oscillate; hence the word “system”). 

▴ Figure 3 (a) The experimental arrangement and (b) the resulting displacement–time graph 
for an illustration of simple harmonic motion.
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The position of the oscillator at any moment in time is known as the 
displacement x. As in Theme A, displacement is a vector that can be positive 
(when the mass is above the equilibrium position here) or negative (when it 
is below). Once the positive direction has been chosen as upwards, then it 
must be used in a consistent way for all vector quantities in the oscillation, 
including forces, velocities, displacements and accelerations.

• The maximum displacement of the oscillator is known as the amplitude x0. 
This amplitude is measured from the equilibrium position to the extreme 
(largest) displacement. It is not the distance from one extreme to the other. 
Amplitude does not have a sign and is not a vector quantity.

• One complete cycle of the oscillation occurs when the mass (in this situation) 
goes from one position in the motion through the extreme position on the 
opposite side, back to the other extreme, finally moving through the original 
position in the original direction. It is easiest to understand this for the  
mass–spring system by starting at the equilibrium position. The mass goes 
down to the bottom, back through the equilibrium, moving upwards, and 
to the top. Then it goes down through the equilibrium again. The cycle only 
ends with this second transit through the equilibrium. Trace this motion out 
on the graph (Figure 3(b)). There are six cycles in 10 s.

• The time taken to complete one cycle is known as the time period,T. For 
the isochronous mass–spring system, the time period (often shortened to 
period) does not depend on where the cycle starts or on the amplitude.

• The frequency f of the oscillation is the number of cycles that the system 
goes through in one second. Thus

f = 
1
T

The unit of frequency is the hertz (Hz), which is the same as s−1.

Worked example 1
The pendulum of a wall clock 
completes 25 oscillations in 30 s. 
Calculate:
a. the period
b. the frequency of the 

oscillations.

Solutions

a. T = 
30
25

 = 1.2 s

b. f = 
1
T

 = 
1

1.2
 = 0.83 Hz

Practice questions 

1. Which of the following quantities describing an oscillation can 
be negative?

 A. displacement  B. amplitude  C. period  D. frequency
2. A mosquito flaps its wings at a frequency of 580 Hz. Calculate the period 

of mosquito’s flaps.
3. An object undergoes simple harmonic motion with a period of 0.40 s. 

The distance between the extreme positions of the object is 6.0 cm. 
Calculate:
a. the frequency
b. the amplitude.

Applying the definitions
These definitions apply to many repetitive phenomena such as the rhythm of a 
human heart. Figure 4 shows the electrocardiograph of a healthy heart that is 

beating at 65 beats per minute, a frequency of 
65
60

 = 1.08 Hz. This means that T 

for the graph is 
1
f

 = 
1

1.08
 = 0.92 s. The overall height of the voltage spike from  

0 V, shown as A in Figure 4, is the amplitude signal output by this sensor. 

A

▴ Figure 4 The normal heart rhythm of 
an adult male. The graph shows the pd 
measured using a voltage sensor attached to 
the chest wall.
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• Tool 2: Use sensors.

• Tool 2: Represent data in a graphical form.

• Inquiry 1: Develop investigations that involve hands-on 
laboratory experiments, databases, simulations and 
modelling.

• Inquiry 1: Design and explain a valid methodology.

In this investigation, an ultrasound motion sensor is used to 
monitor the position of a mass suspended from the end of a 
long spring. The data logger software processes the data to 
produce a graph showing the variation of displacement with 
time. 

• Arrange the apparatus as shown in Figure 3(a). The 
system needs to have a period of at least 1.0 s. Avoid 
reflections from the surroundings by keeping objects 
well away from the apparatus.

• Put the mass into oscillation by displacing it vertically 
and then releasing it.

• Set up the data logger so that it is triggered to start 
reading at a given displacement value. 

• Use software to plot graphs of velocity and 
acceleration (in addition to displacement) against time. 

• Devise an investigation to find out how the time 
period of the oscillation varies with:

• spring constant k

• mass m on the spring.

• You may wish to carry out a preliminary set of runs to 
get an idea of the relationships between k and T, and 
between m and T. Try doubling the mass or quadrupling 
it to see the effect on T. Two or more identical springs 
can be joined together in series or in parallel to 
vary k. (Hint: look at page 59 to remind yourself how k 
depends on the arrangement of springs).

• You can also perform similar investigations with other 
oscillations, such as a mass swinging from side to side 
at the end of a long string — a simple pendulum. 

You can find out more details of electromagnetic radiation in Topic C.2.

Heinrich Hertz, for whom the 
frequency unit was named, was a 
German physicist working in the 
mid-19th century. He demonstrated 
the existence of electromagnetic 
radiation in the radio wavelengths 
and (famously) suggested that his 
work had no future application! 
Within 60 years, the Italian 
nobleman Count Marconi had 
sent messages across the Atlantic 
Ocean using radio waves. Hertz, 
unfortunately, never lived to see the 
application of radio waves, as he 
died in 1894 aged 36. 

There is a direct link between the 
frequency of simple harmonic 
motion and the frequencies of 
the electromagnetic radiation 
that Hertz identified. His waves 
consisted of oscillating electric and 
magnetic fields that are modelled 
as sinusoidal variations just like 
those of an oscillating spring.

Global impact of 
science

Investigating a mass — spring system

Simple harmonic motion
The variation with time of the displacement of the mass–spring system shown in 
Figure 3(b) is regular and simple. This is a negative sine curve (making the mass 
go upwards first will make this a positive sine curve). Oscillations that follow 
this model with a sinusoidal displacement–time graph are undergoing simple 
harmonic motion.

There are two requirements for motion to be simple harmonic. Both relate to the 
restoring force (and therefore the acceleration) acting on the system.

• The size (magnitude) of the force (acceleration) must be proportional to the 
displacement of the object from a fixed point.

• The direction of the force (acceleration) must be towards the fixed point.

Newton’s second law of motion links acceleration and force in these statements.

At the equilibrium position, the weight of the mass is equal and opposite to the 
tension in the spring (assuming that the spring has negligible mass). 

When the spring obeys Hooke’s law (Topic A.2, page 57), then F = −kx, where 
F is the restoring force on the spring, k is the spring constant and x is the spring 
extension. 

Substituting for F means that, for simple harmonic motion:

a = − (constant)2 × x

The constant is squared. This forces it to be positive, so that the minus sign 
always indicates that the displacement and acceleration vectors are in opposite 
directions. As a result, this equation now agrees with both of the requirements for 
simple harmonic motion.

In simple harmonic motion, the system is always accelerated towards the centre 
of the motion — the equilibrium position. When the mass is moving away from the 
equilibrium position, the system is slowing the mass down, accelerating it towards 
the equilibrium position. When the mass has reached the extreme of the motion, 
the system still accelerates it towards the equilibrium position, but now the speed 
of the motion increases until it reaches a maximum in the motion’s centre.

This is summed up in Figure 5, which shows the variation of acceleration with 
displacement for any simple harmonic motion, not just the mass–spring system 
here. The gradient of the graph is negative as expected.

We need to know more about the constant in the defining equation. It is often 
written as

a = −ω2 × x

with the constant as ω. This makes an important link between simple harmonic 
motion and the circular motion of Topic A.2.

Angular frequency
The oscillation of the pendulum can be compared with circular motion using the 
apparatus shown in Figure 6.

Two metal spheres are used, one acting as the mass for the pendulum. The other 
sphere is mounted on a horizontal turntable that rotates at a constant angular 
speed. The length of the string is adjusted so that the time period T of the simple 
harmonic motion oscillation is the time taken for the turntable to rotate once. 
When the arrangement is illuminated from the side, the two spheres move 
together and are synchronized on the screen. The circular motion is projected 
onto a vertical plane (the screen) and has the same pattern of movement as a 
pendulum when viewed in the same vertical plane.

The angular speed of the rotating sphere is

angular displacement in radians
time for one rotation

 = 
2π
T

In Topics A.2 and A.4, the quantity angular speed was given the symbol ω and 
therefore

ω = 
2π
T

Putting this all together gives
T = 

1
f

 = 2π
ω

The same is true for ω in the simple harmonic motion equation, but here the 
quantity is known as angular frequency because it has the unit s−1 equivalent to 
the hertz (Hz). As before, although this is rad s−1, the radian is ignored because it 
is a unitless ratio. 

Because ω is linked to T, which depends only on the properties of the harmonic 
oscillator, it also links the magnitude of the acceleration of the oscillator to its 
displacement. To show this link in more detail, we will look at two oscillators in 
detail: the mass–spring system and the simple pendulum.

a

x
+x0

‒x0

0

0

▴ Figure 5 A graph of the variation of 
acceleration with displacement for simple 
harmonic motion. The graph is a straight 
line of negative gradient going through 
the origin.

screen

turntable

light source
drive belt

metal sphere

▴ Figure 6 The projection of a ball  
moving in a horizontal circle onto  
a vertical plane gives the same motion  
as a simple pendulum performing  
simple harmonic motion. 

The demonstration above shows 
the close link between circular 
motion and simple harmonic 
motion. One can be regarded as a 
one-dimensional projection of the 
other. The link extends beyond the 
purely practical, however, as the 
mathematics of circular motion from 
Topic A.2 and the mathematics 
of simple harmonic motion are 
themselves closely related. Similar 
physical quantities are defined in 
the same way in both.

How can circular motion 
be used to visualize 
simple harmonic motion?
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The mass–spring system 
The mass–spring system here is a mass on a horizontal frictionless surface 
oscillating at the end of a spring. This is known as “exact simple harmonic 
motion” when the spring obeys Hooke’s law. The horizontal case is easier to 
analyse than when the spring hangs vertically. (You can analyse the vertical case 
for yourself, remembering to include the weight of the mass as part of the net 
force that acts on the spring.) 

The force FH acting on the spring is directly proportional to its extension x:  
FH = –kx (from Topic A.2) and acts to return the spring to its equilibrium position. 
Therefore ma = –kx. When the positive direction is defined to be to the right 
and the mass is displaced to the right, the force must be directed to the left. The 
negative sign shows this.

This equation re-arranges to a = – 1 k
m 2x and shows the shape of the simple 

harmonic motion equation with its negative sign and positive constant inside the 
brackets.

Therefore, ω2 = 
k
m

 and ω =   
k
m

, leading to

T = 2π  
m
k

as the equation for the time period of a mass–spring system.

The simple pendulum
A simple pendulum consists of an object on the end of a string of negligible mass 
that is swinging in a vertical plane. The pendulum obeys simple harmonic motion 
provided that the angle of swing from the vertical is small (<10°).

The string has a length I and is displaced with its bob of mass m through a vertical 
angle θ (Figure 9). When released, the bob moves with time period T. 

The restoring force that pulls the bob back to the equilibrium position is  
–mg sin θ. The negative sign is because θ is measured to the right (anticlockwise 
on the diagram), but the restoring force is to the left (clockwise).

So −mg sin θ = ma, leading to a = −g sin θ.

The length of the arc from the equilibrium position to the bob is x, so

θ = 
x
l

 and a = −g sin 1 x
l 2

giving
a = – g

l
 x

providing that θ < 10°.

You can check, using your calculator, that when θ < 12° (about 0.2 rad), then sin θ 
and θ are within 1% of each other when calculated using radian measure.

Thus, ω2 = 
g
l

 and ω =   
g
l

, with

T = 2π  
l
g

which is the equation for the time period of a simple pendulum.

Analyses such as this can be carried out for many more types of oscillator too, 
including floating cylinders bobbing up and down on the flat surface of a lake .
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▴ Figure 8 A mass–spring system.

How can the 
understanding of simple 
harmonic motion apply to 
the wave model? (NOS)

Topics C.2 and C.3 deal with 
waves — periodic movements of 
interconnected individual particles 
that transfer energy. There must 
be an agent that generates the 
waves and this could easily be 
an object moving in a circle. The 
waves in deep oceans are linked 
to a circular motion of water that 
becomes an up-and-down motion 
of the surface. The mathematics 
developed in this Topic applies to 
the wave motions later.

▴ Figure 7 Waves on the surface of 
the ocean are caused by the circular 
motion of the water.

θ

θ

l

Ft m

x

mg sin θ
mg cos θ

▴ Figure 9 A simple pendulum.

▴ Figure 10 Many mechanical objects 
can be approximated as either a mass on a 
spring or a pendulum. This picture shows 
a car’s suspension which consists of a 
spring to absorb the shocks from bumps 
in the road. The car behaves like a mass 
on a spring and will have a time period for 
its oscillations.

As you have seen, a simple pendulum obeys simple harmonic motion (i.e. 
it is isochronous) provided that the amplitude is small (less than 10°). What 
happens if the pendulum swings through a larger amplitude?

The graph shows the variation of the time period T with angle θ for a 
pendulum of length 1.8 m.
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• Use the graph to estimate the percentage difference in T when the 
pendulum swings with θ = 80° and when θ = 10°.

• A student measures the time period of the pendulum by using oscillations 
with θ = 10°. Explain why it would not be appropriate to give this 
measurement to 3 decimal places.

• You are asked to design an experiment to confirm that T changes 
between a 10° and a 45° amplitude. You have a stopwatch which reads 
to the nearest 0.01 s. Assume that your reaction time is 0.1 s. You decide 
to time the pendulum over several oscillations and then divide the total 
time by the number of oscillations to arrive at T. How many oscillations 
would you need to measure to verify that T is longer at 45° than at 10°?

Data-based questions

Worked example 2
The graph shows how the 
acceleration a of an object varies 
with the displacement x.
a.  Outline why the object 

performs simple 
harmonic motion.

b.  State the amplitude of 
the oscillations.

c. Determine the period.

Solutions
a. The graph is a straight line with 

a negative slope through the 
origin. Hence, the acceleration 
is proportional to negative 
displacement and satisfies the defining equation of simple harmonic motion, a = −ω2 x.

2

–2
0–1 1 2 3 4 5 6

x / 10–2 m

a / m s–2

–2–3–4–5

–4

–6
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8
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Worked example 3
A mass of 0.045 kg oscillates simple harmonically at the end of a spring of spring constant 1.3 kN m−1. Calculate the 
frequency of the oscillations.

Solution

T = 2π  
m
k

= 2π  
0.045

1.3 × 103
 = 3.7 × 10−2 s.

f = 1
T

= 1
3.7 × 10−2

= 27 Hz.

Worked example 4
An object of mass 2.1 kg attached to a spring undergoes simple harmonic motion on a horizontal frictionless surface. 
The period of oscillations is 1.8 s and the amplitude is 0.25 m.
Calculate:
a. the angular frequency
b. the maximum force acting on the object
c. the spring constant.

Solutions

a. ω = 2π
T

= 2π
1.8

= 3.5 rad s−1.

b. From the defi ning equation of simple harmonic motion, the maximum acceleration of the object is amax = ω2 x0, where 

x0 is the amplitude of oscillation. The maximum force is therefore Fmax = mamax = mω2 x0 = (2.1) 12π
1.8 2

2

 (0.25) = 6.4 N.

c. k = Fmax

x0

= 6.4
0.25

= 26 N m−1.

b. The amplitude is equal to the maximum displacement, 5.0 cm.
c. The period is related to the angular frequency ω, which can be determined from the slope of the graph.

Slope = −ω2 = – 6.0
5.0

⇒ ω =   
6.0
5.0

= 1.1 rad s−1. From here, T = 2π
ω

= 2π
1.1

= 5.7 s.

Practice questions

4. A force F acting on a point mass depends on the 
displacement x of the mass. Which of the relationships 
between F and x leads to simple harmonic motion?

 A. F = −x2 B. F = −2x C. F = 3x D. F = 4x2

5. Calculate:
a. the period of a simple pendulum whose length 

is 0.80 m
b. length of a simple pendulum whose period 

is 2.4 s.

6. An object of mass 0.45 kg is attached to a spring 
with spring constant 12 N m−1. The object undergoes 
simple harmonic motion with an amplitude of 0.15 m. 
Calculate:
a. the period of oscillation
b. the maximum force acting on the object from 

the spring.
7. A mass–spring system undergoes simple harmonic 

oscillations of a frequency 0.58 Hz. The mass is 
0.90 kg. Calculate the spring constant.

Energy changes during simple harmonic motion
One way to interpret simple harmonic motion is in terms of energy transfer. 

Figure 11 shows the transfers that occur in the horizontal mass–spring system.

kinetic energy maximum
elastic potential energy zero

kinetic energy zero
elastic potential energy maximum

kinetic energy maximum
elastic potential energy zero

kinetic energy zero
elastic potential energy maximum

–vmax

x = 0x = –x0

v = 0

v = 0

x = 0 x = x0

x = 0

m

m

m

+vmax

x = 0

m

▴ Figure 11 The energy transfers that occur in simple harmonic motion for 
a mass–spring system.

8. A weightless spring of spring constant k = 2.9 N m−1

hangs vertically with a mass m = 0.050 kg attached 
to its free end. When the mass in in the equilibrium 
position, the spring extends by a distance L0 relative to 
the unstretched length.

 a. Calculate L0.
The mass is displaced vertically from the equilibrium 
position by a distance x and released.
b. Draw a free-body diagram for the mass at the 

displaced position.
c. Show that the magnitude of the net force acting 

on the mass is kx.

unstretched
length

equilibrium
position mx

L0

m

d. Compare the period of the vertical mass–spring 
system to that of a horizontal system, if the mass 
and the spring are the same in both systems.

e. Calculate the period of the oscillations.

The mass is oscillating between −x0 and +x0. The amplitude of the motion is x0. 
At each extreme, the speed of the mass is zero, so the kinetic energy is also zero. 
At this point, all the energy is in the form of stored elastic potential energy. At the 
centre of the motion the spring is at its natural (unextended) length and the mass 
is moving at its fastest, so the kinetic energy is also at a maximum with no energy 
stored in the form of elastic potential energy.

During one cycle of the oscillation, there are two kinetic-energy maxima because 
there are two velocity maxima, one in each direction when the mass is at the 
equilibrium position. In the same way, there are two maxima of elastic potential 
energy. The frequency of the energy transfers is double that of the frequency of 
the oscillation itself. Conversely, the time period for one energy cycle is half that 
of the time period for the simple harmonic motion.
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Figure 12 shows the energy transfers for the simple pendulum.

For both oscillators, there is a continuous transfer between the kinetic and 
potential energies. When there are no energy losses from a system, such as 
those due to air resistance or friction, then the total energy in the system must 
be constant. 

Figure 13 shows three graphs for the variation with time of the kinetic Ek, 
potential Ep and total energies Etot for simple harmonic motion. It also shows 
how the displacement varies with time, so that the difference between the 
period of energy transfer and the period of simple harmonic motion is clear.

point of
suspension

ground

A

Ep(max) = mgh
Ek = 0

Ep = 0
Ek = maximum

B

C

O

h h

string

bob

Ep(max) = mgh
Ek = 0

▴ Figure 12 The energy analysis is similar 
for the simple pendulum. The transfers 
between gravitational potential energy and 
kinetic energy for the pendulum bob are 
shown here.

▴ Figure 13 The variations of kinetic and potential energies in simple harmonic motion 
with time. The total energy in the system is constant. 

energy variations
with time

time

variation of
displacement
with time

displacement

start of energy cycle
start of oscillation

end of energy cycle
halfway through oscillation cycle

Ep

Ek

Etotal

Worked example 5
A body undergoes simple 
harmonic motion of a frequency 
20 Hz. How many times during 
one second is the kinetic energy 
of the body zero?

Solution
The KE is zero twice during one 
oscillation; hence 2 × 20 = 40 
times per second.

Worked example 6
The graph shows how the potential energy of a simple 
pendulum varies with time.
a. Identify the first time when:
 i.  the pendulum passes through the equilibrium 

position
 ii. the kinetic and the potential energies are equal.
b. State the period of oscillations.
c. Draw a graph of the variation of the kinetic energy of 

the pendulum with time.

Solutions
a. i.  In the equilibrium position the potential energy is 

zero. This happens for the first time at 0.2 s.
 ii.  The potential energy must decrease to one half of 

its maximum value. This happens at 0.1 s.
b. It takes 0.4 s to move from one extreme position (of 

maximum amplitude and potential energy) to the 
other. This is one half of the complete oscillation. The 
period is therefore 2 × 0.4 = 0.8 s.

c. The KE is a maximum when the PE is zero, and vice versa.
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Topic B.2 gives the absorption mechanisms of electromagnetic radiation by molecules of the greenhouse gases. 
These molecules have vibrational states that are excited by the radiation. This leads to the temporary storage of the 
electromagnetic energy with subsequent re-radiation in different directions. There are links here both to the work in this 
topic but also to the resonance effects discussed in more detail in Topic C.4.

When changes to the atmosphere occur, then the levels of radiation absorption reflect the change. With greater 
concentrations of greenhouse gases, the absorption and re-radiation increases, leading to climate change.

How does the creation of links within physics enable scientists to develop greater understanding of the linked topics?

How can greenhouse gases be modelled as simple harmonic oscillators? 

What physical explanation leads to the enhanced greenhouse effect? (NOS)

Linking circular motion and simple harmonic motion
When a circular motion in a horizontal plane is projected onto a vertical plane as 
in Figure 6, it is equivalent to a motion that is simple harmonic (Figure 14). 

There are strong links from Topic C.1 to the physics of Topics C.2 and C.3. Wave motion is a common phenomenon  
and a working knowledge of the mathematics of simple harmonic motion helps our understanding of wave behaviour 
and vice versa.

One way to describe the motion of a particle in a wave is in terms of a vector of constant length that rotates at a constant 
speed. Such a vector is known as a “phasor”. This is the function of the red arrow in Figure 14. The arrowhead of the 
phasor traces out the motion of the wave particle. Wave motion and simple harmonic motion are closely interlinked, 
with the same terms and quantities being used in both. 

Do links such as these give us further insights into the physical world?

How can the understanding of simple harmonic motion apply to the wave model? (NOS)

y = r sinθ

π 2π ωt
θ = ωt

x = r cosθ

y y

x

r

r

0
0

P

‒r

▴ Figure 14 Projecting circular motion onto a y-axis.

Strictly speaking, once resistive losses of any sort occur for an oscillating system, then the oscillation is no longer simple 
harmonic. True simple harmonic motion never stops. The graphs for the variation with time of displacement/velocity/
acceleration and the energy–time graphs have constant amplitudes as there are no resistance or energy losses to reduce 
the amplitude.

Energy loss and simple harmonic motion

The y-axis point P is moving around the circle in Figure 14 at a constant angular 
speed ω. 
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Two equations relate x and y to the circle of radius r and the angle θ between P 
and the x-axis. These are:

• x = r cos θ

• y = r sin θ. 

The angle θ between the arrow and the x-axis is known as the phase angle.

As θ = ωt, the equations for the projection of P onto the diameter of the circle 
along the x-axis become x = r cos ωt or y = r sin ωt. The radius of the circle is the 
amplitude of the simple harmonic motion so r = x0 and we obtain the simple 
harmonic motion equations:

• x = x0 cos ωt for simple harmonic motion that begins at the extremes

• x = x0 sin ωt for simple harmonic motion that begins in the centre.

Two further equations also follow from the definition of simple harmonic motion 
and from x = x0 sin ωt: 

The velocity v = dx
dt

 = ωx0 cos ωt and the acceleration a = dv
dt

 = −ω2x0 sin ωt.

Notice that, because x = x0 sin ωt, then a = −ω2 (x0 sin ωt) = −ω2x. Our solution 
for the simple harmonic motion equation that arises from the projected circular 
motion satisfies the defining equation.

The three equations lead to three graphs.

Figure 15 shows the variations with time of (a) displacement, (b) velocity and (c) 
acceleration for the case where the motion starts at the centre. The displacement 
graph (a) is a sine curve, (b) is a cosine curve and (c) is a negative sine curve.  
(For motion starting at the positive extreme, they will be respectively (a) cosine, 
(b) −sine and (c) −cosine.)

The gradient at a particular time for the velocity–time graph gives the acceleration 
at that instant, and, similarly, the gradient of the displacement–time graph yields 
the velocity at that moment. This is easy to see at the extremes when the motion is 
momentarily at rest (v = 0).

There is another equation for the velocity that you will find useful because it does 
not contain t. Using the identity, sin2 θ + cos2 θ = 1, so that cos θ = ±√1 – sin2 θ 
and substituting this into the speed equation gives v = ±ωx0√1 – sin2 θ. However, 

sin θ = x
x0

. To see why, look at Figure 15 and notice that sin θ is the ratio of the 

displacement of P (which is at x) to the radius of the circle (which corresponds to 

the amplitude x0). This gives v = ±ωx0  1 – 
x2

x0
2

, which re-arranges to

v = ±ω√x0
2 − x2

The ± sign reminds us that the object can be travelling in either direction at 
a particular x. As you can see, this is a useful equation when you know the 
amplitude and displacement of an object but do not know the time at which the 
displacement occurs.

Displacement x = x0 sin ωt

Velocity (x unknown) v = ωx0 cos ωt

Velocity (t unknown) v = ±ω√x0
2 – x2

Acceleration a = −ω2 (x0 sin ωt) = −ω2x

▴ Table 1 The four equations for simple harmonic motion.
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▴ Figure 15 Variation with time of 
(a) displacement, (b) velocity and (c) 
acceleration. These graphs all assume that 
the motion starts at the equilibrium position.

Worked example 7
The graph shows how the displacement of a body 
performing simple harmonic motion varies with time.
Calculate:
a. the angular frequency of oscillations
b. the maximum velocity of the body
c. the velocity after 3.0 s
d. the maximum acceleration.

Solutions
a. The period is 5.0 s. ω = 

2π
5.0

 = 1.3 rad s−1.

b. The amplitude is 4.0 cm.  

vmax = ωx0 = 
2π
5.0

 × 4.0 = 5.0 cm s−1.

c. The displacement follows a sine function, x = x0 
sin ωt. Hence, the velocity after a time t should be modelled with a cosine function, v = ωx0 cos ωt. 

 At t = 3.0 s, v = 
2π
5.0

 × 4.0 cos 1 2π
5.0

 × 3.02 = −4.1 cm s−1.

d. amax = ω2 x0 = 1 2π
5.0 2

2

 × 4.0 = 6.3 cm s−2.
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Worked example 8
A particle of mass 4.0 g undergoes simple harmonic motion with frequency 25 Hz and amplitude 13 mm.
Calculate, when the displacement of the particle is 10 mm:
a. the speed
b. the force acting on the particle.

Solutions
a. The angular frequency is ω = 2π

T
 = 2πf = 2π × 25 = 157 rad s–1.

 v = ω √x0
2 − x2 = 157 √132 − 102 = 1300 mm s−1 = 1.3 m s−1.

b. F = ma = −mω2 x = −4.0 × 10−3 × 1572 × 10 × 10−3 = −0.99 N.

Practice questions

9. The graph shows how the displacement x of a particle 
undergoing simple harmonic motion varies with time t. 

–15

–20

0 2 4 6 8 10 12 14 16

t / ms

x 
/

m
m

–10

–5

0

5

10

15

20

a. Identify the time when the particle has:
 i. the maximum negative velocity
 ii. the maximum positive acceleration.
b. Calculate the velocity of the particle:
 i. at t = 10 ms 
 ii. when x = 5.0 mm for the first time.
c. Calculate the maximum acceleration of the 

particle.
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10. The velocity–time graph for an object undergoing 
simple harmonic motion is shown.
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a. Identify the time at which the object has a 
maximum positive displacement.

b. Calculate the amplitude.
c. Calculate the displacement of the object at 4.0 ms.

11. An object of mass 100 g is suspended from a vertical 
spring of spring constant 7.8 N m−1. The object is 
displaced by 12 cm vertically downwards from the 
equilibrium position and released.
a. Calculate the frequency of the oscillations.
b. Calculate the maximum speed of the object.
c. Calculate the speed of the object when it is 

6.0 cm above the equilibrium position.

• Tool 2: Use computer 
modelling.

The defining equation for simple 
harmonic motion is

a = – ω2 x
This can be written in differential form 

as d
2x

dt2
 = −ω2x because acceleration 

is d
2x

dt2
. This second-order differential 

equation can be solved by calculus, 
by spreadsheet modelling or by 
using modelling software. This is 
one of many examples in physics of 
a simple second-order differential 
equation of the sort that you may 
meet in IB Diploma programme 
mathematics.

Simple harmonic motion is used as 
an example of modelling using a 
spreadsheet or modelling software 
in the section on Tools for  
physics (p. XXX).

Modelling simple 
harmonic motion

Phase angle and phase difference
So far, we have looked at simple harmonic motion that begins at particular positions 
in the motion, the extreme displacements when x = x0 and at the centre of the motion 
when x = 0. Is it possible to produce an equation that allows for any starting point?

The simple harmonic motion equation is a second-order differential equation, and 
it can be shown that there are general solutions to this equation. One of these is

x = x0 sin(ωt + ϕ)

This resembles the earlier solutions, but has the addition of the single term ϕ. This 
quantity is known as the phase angle as before.

Look carefully at the displacement–time graphs for two simple harmonic motions 
in Figure 16. At the beginning of the graph, the blue curve shows a displacement 
of zero, but the red curve is just about to reach its maximum displacement. It is 
about one-eighth of a cycle ahead of the displacement. To be precise, the red 
curve is one radian ahead of the blue curve. As one cycle corresponds to 2π rad, 

the red curve leads the blue by 1
2π

 = 1
6.3

 = 0.16 of a cycle.
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time / ms

di
sp

la
ce

m
en

t

▴ Figure 16 Phase difference in simple harmonic motion. The blue curve lags behind the 
red curve because it reaches its peak at a later time.

Since the equation for the blue curve is x = x0 sin(ωt + 0), then the equation for 
the red curve must be x = x0 sin(ωt + 1.0).

The phase difference between the curves in Figure 16 can be modelled using 
the circular motions for both oscillations, as in Figure 17. Remember that both 
oscillations have the same ω and therefore travel around the circle at the same 
angular speed. The phase difference is the angle between the radial lines that 
are tracing out the simple harmonic motion as the blue tracing point chases the 
red point around the circle. 

The equations for displacement, velocity and acceleration in full become:

• Displacement:  x = x0 sin(ωt + ϕ)

• Velocity:  v = ωx0 cos(ωt + ϕ)

• Acceleration:  a = −ω2x = −ω2x0 sin(ωt + ϕ)
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▴ Figure 17 A circular motion projected onto a line gives simple harmonic motion. The red point leads the blue point by one radian.

Worked example 9
The graph shows how the displacement x 
varies with time t for an object undergoing 
simple harmonic motion.
a.  The displacement can be modelled with 

an equation x = x0 sin(ωt + ϕ).
 i. State the value of x0.
 ii. Calculate the value of ω.
 iii. Determine the phase angle ϕ.
b.  Calculate the velocity of the object at  

t = 3.0 s.

Solutions
a. i. x0 = 0.15 m.

 ii.  The period of motion is 4.0 s.  

ω = 
2π

4.0
 = 1.6 rad s−1.

 iii.  The object is at the equilibrium 
position after 1.5 s. Had the 

oscillation started at x = 0, the object would have returned to the equilibrium position after 2.0 s, which is 
1
8

 of 

the period later than it actually did. The phase angle is therefore ϕ = 
2π
8

 = 
π
4

 ≃ 0.79 rad.

b. v = ωx0 cos(ωt + ϕ) = 1 2π
4.0 2(0.15) cos1 2π

4.0
 × 3.0 + π

4 2 = 0.17 m s−1.
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Worked example 10
The displacement x, in metres, of a particle undergoing simple harmonic motion is given by the equation  
x = 7.5 × 10−3 sin(12t + 2.0), where t is the time in seconds.
a. Calculate the period of motion.
b. Calculate the velocity of the particle after 0.30 s.

Solutions
a. The angular frequency is ω = 12 rad s−1. T = 2π

ω
 = 

2π
12

 = 0.52 s.

b. v = ωx0 cos(ωt + ϕ) = 12 × 7.5 × 10−3 cos(12 × 0.3 + 2.0) = 7.0 × 10–2 m s–1.

Practice questions

12. The graph shows the variation with time t of the 
displacement x of a particle undergoing simple 
harmonic motion.
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 The oscillation can be modelled with an equation  
x = x0 sin(ωt + ϕ).
a. Determine the values of x0, ω and ϕ.
b. Calculate the maximum velocity of the particle.
c. Calculate the velocity and the acceleration of the 

particle after 0.08 s.
13. The displacement x, in cm, of a particle  

undergoing simple harmonic motion is given by  
x = 12.0 sin(0.500t + 1.00), where t is time in s.
a. Calculate the period of the oscillations.
b. Calculate the velocity at t = 0.

Energy transfer equations
The energy transfers between kinetic Ek and potential Ep that drive harmonic 
oscillators were described earlier. The simple harmonic motion equations can be 
used to derive a set of energy equations. Phase differences are ignored, but ϕ 
can easily be re-introduced into the equations when you need to.

The kinetic equation is related to 
1
2

 mv 2 as usual. The speed v = ±ω√x0
2 – x2 and 

therefore v2 = ω2 (x0
2 − x 2), so that

Ek = 
1
2

mω2 (x0
2 − x2)

where m is the mass of the object undergoing simple harmonic motion. 

Immediately, we can see that the total energy (which occurs when the object is 
moving at its fastest when x = 0) is 

Etot = 
1
2

mω2x0
2

Also, Etot = Ek + Ep and therefore Ep = Etot – Ek = 1
2

mω2x0
2 – 1

2
 mω2 (x0

2 – x2)  

which is equal to 
1
2

 mω2 x0
2 – 1

2
 mω2 x0

2 + 1
2

 mω2 x2 = 1
2

 mω2 x2.
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▴ Figure 18 Ek, Ep and ET for simple 
harmonic motion.

Worked example 11
A mass of 0.15 kg attached at the end of a weightless spring oscillates with simple harmonic motion. The mass 
passes through the equilibrium position with a speed of 1.4 m s−1.
a. Calculate the total energy of the oscillating system.
b.  The spring constant is 6.4 N m−1. Determine the amplitude of the oscillations.

Solutions
a. At the equilibrium position, the potential energy is zero, so the total energy of the system is kinetic only. 

ET = 
1
2

 mv 2 = 
1
2

 (0.15) (1.4)2 = 0.147 J.

b. We can find the amplitude x0 by re-arranging the equation ET = 
1
2

 mω2 x0
2 ⇒ x0 =   

2ET

mω2
. For a mass–spring system, 

we have a = – k
m

 x and so ω2 = 
k
m

. We combine the equations to get x0 =   
2ET

k
 =   

2 × 0.147
6.4

 = 0.21 m.

Worked example 12
The graph shows how the potential energy of an 
object executing simple harmonic motion varies 
with the displacement of the object. The amplitude 
of motion is 20 cm.

a. State the total energy of the oscillating system.
b. Estimate, using the graph, the displacement of 

the object when the kinetic and the potential 
energies are equal.

c. Sketch a graph showing the variation of the 
kinetic energy of the object with displacement.

d. The mass of the object is 2.6 kg. Calculate the 
maximum speed of the object.

e. Determine the period of the oscillations.
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The graphs of the variations of both Ek and Ep with displacement are parabolas. 
Figure 18 shows Etot, Ek and Ep

 all plotted against displacement. 

Notice that the displacement at which the kinetic energy and the potential 
energy are equal (Ek = Ep) is not at half the amplitude but closer to x0 than the 
equilibrium point.
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Solutions
a. 8.0 J

b. In this situation both Ek and Ep are equal to 
4.0 J. From the graph, this happens when 
the displacement is approximately ±14 cm.

c. The graph has a similar parabolic shape but 
is inverted compared with the potential 
energy curve.

d. The maximum kinetic energy is 8.0 J, so the 
maximum speed can be calculated from 

v =   
2Ek

m
=  

2 × 8.0
2.6

= 2.5 m s−1

e. It is convenient to fi rst fi nd the angular 
frequency  and then the period T. 

ET = 1
2

mω2 x0
2 ⇒ ω =  

2ET

mx0
2

=  
2 × 8.0

2.6 × 0.202
= 12.4 rad s−1. From here, T = 2π

12.4
= 0.51 s.
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Practice questions

14. An object of mass 0.060 kg undergoes simple 
harmonic motion with frequency 4.0 Hz and amplitude 
0.25 m. Calculate, when the displacement of the 
object is 0.10 m:
a. the potential energy
b. the kinetic energy.

15. The graph shows how the kinetic energy of an 
oscillating mass-spring system varies with the 
displacement of the mass from the equilibrium 
position. The mass is 0.70 kg.
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a. Calculate the maximum velocity of the mass.
b. Determine: 
 i. the period of the oscillations
 ii. the spring constant.

16. An object of mass 1.00 kg is attached to a spring with 
spring constant 4.50 × 102 N m−1 and is allowed to 
undergo simple harmonic motion on a frictionless 
horizontal surface. The object is initially displaced by 
0.200 m and is given an initial velocity of 3.50 m s−1.

 Determine:
a. the total energy of the system
b. the amplitude of the oscillations. 

17. An object oscillates simple harmonically with an 
amplitude x0. When the displacement of the object is 
zero, the kinetic energy of the object is E. What is the 
kinetic energy of the object when the displacement 

is 
x0

2
?

A. 
E
4

   B. 
E
2

   C. 
3E
4

   D. E

A substitution from the simple harmonic motion velocity equation gives 

Ek = 1
2

m(ωx0 cos ωt)2 which becomes Ek = 1
2

mω2 x0
2 cos2ωt.

Using Ep = Etot − Ek leads to Ep = 1
2

 mω2 x0
2 – 1

2
mω2 x0

2 cos2ωt. This simplifies to 
1
2

mω2 x0
2 (1 – cos2 ω t) and hence, using sin2 θ + cos2 θ = 1, to

Ep = 1
2

mω2 x0
2 sin2 ωt.

The energy–time graphs in Figure 13 showed the relationships between Etot, Ep

and Ek, and remind you that the frequency of the energy change is double the 
frequency of the underlying simple harmonic motion. 

Strictly speaking, once resistive losses of any sort occur 
for an oscillating system, then the oscillation is no longer 
simple harmonic. The graphs for the variation with time 
of displacement/velocity/acceleration and the energy–
time graphs have constant amplitudes, as there are no 
resistance or energy losses to reduce the amplitude. This 
is discussed in more detail in Topic C.4,where the effects 
of damping (friction) are described in detail.

This is an easy question to answer if you use modelling 
software, as shown in the section on modelling in Tools 
for physics p XXX. In the Modellus X model used there, 
only one change is required to the first equation. 

The term −b × vx must be added to represent a drag 
force that is proportional to the speed. The drag 
coefficient is b; vx is the velocity of the oscillating particle. 

When b is set to 1.0 ,then the behaviour of the oscillating 
system changes to an oscillation that is damped. 
The amplitude decreases with time, and the motion 
eventually stops. 

You can explore the effects of varying d if you set this 
model up for yourself. A particularly interesting case 
occurs with b = 2.6. This is critical damping and is 
examined in Topic C.4.

How does damping affect periodic motion?

Total energy Etot
1
2

mω2 x0
2 1

2
mω2 x0

2

Potential energy Ep
1
2

mω2 x2 1
2

mω2 x0
2 sin2 ω t

Kinetic energy Ek
1
2

mω2 (x0
2 – x2)

1
2

mω2 x0
2 cos2 ω t

▴ Table 2 The energy equations.

◂ Figure 19 Part 
of the ModellusX 
soft ware screen 
running a model 
of damped simple 
harmonic motion 
and the outcome 
when the model 
is run. The graph 
is displacement 
against time.

Mathematical Model

Initial ConditionsParameters

Case1
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Case2
All equal x =

–

sumFx = –k × x – b × vx

ax = sumFx
m

= axd vx
dt

m = 0.1
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= vxd x
dt
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It is useful to repeat the comments about energy variation with time from 
page 329 algebraically:
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